Lawrencium

Lawrencium, 103Lr
Lawrencium
Pronunciation/lɒˈrɛnsiəm/ (lo-REN-see-əm)
Appearancesilvery (predicted)[1]
Mass number[266]
Lawrencium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Lu

Lr

(Ups)
nobeliumlawrenciumrutherfordium
Atomic number (Z)103
Groupgroup 3
Periodperiod 7
Block  d-block
Electron configuration[Rn] 5f14 7s2 7p1
Electrons per shell2, 8, 18, 32, 32, 8, 3
Physical properties
Phase at STPsolid (predicted)
Melting point1900 K ​(1600 °C, ​3000 °F) (predicted)
Density (near r.t.)14.4 g/cm3 (predicted)[2]
Atomic properties
Oxidation states+3
ElectronegativityPauling scale: 1.3 (predicted)[3]
Ionization energies
  • 1st: 479 kJ/mol[4]
  • 2nd: 1428.0 kJ/mol (predicted)
  • 3rd: 2219.1 kJ/mol (predicted)
Other properties
Natural occurrencesynthetic
Crystal structurehexagonal close-packed (hcp)
Hexagonal close-packed crystal structure for lawrencium

(predicted)[5]
CAS Number22537-19-5
History
Namingafter Ernest Lawrence
DiscoveryLawrence Berkeley National Laboratory and Joint Institute for Nuclear Research (1961–1971)
Isotopes of lawrencium
Main isotopes[6] Decay
abun­dance half-life (t1/2) mode pro­duct
256Lr synth 27.9 s α 252Md
β+ 256No
260Lr synth 3.0 min α 256Md
β+ 260No
261Lr synth 39 min SF
262Lr synth 4 h β+ 262No
264Lr synth 4.8 h[7] SF
266Lr synth 11 h SF
 Category: Lawrencium
| references

Lawrencium is a synthetic chemical element; it has symbol Lr (formerly Lw) and atomic number 103. It is named in honor of Ernest Lawrence, inventor of the cyclotron, a device that was used to discover many artificial radioactive elements. A radioactive metal, lawrencium is the eleventh transuranic element and the last member of the actinide series. Like all elements with atomic number over 100, lawrencium can only be produced in particle accelerators by bombarding lighter elements with charged particles. Fourteen isotopes of lawrencium are currently known; the most stable is 266Lr with half-life 11 hours, but the shorter-lived 260Lr (half-life 2.7 minutes) is most commonly used in chemistry because it can be produced on a larger scale.

Chemistry experiments confirm that lawrencium behaves as a heavier homolog to lutetium in the periodic table, and is a trivalent element. It thus could also be classified as the first of the 7th-period transition metals. Its electron configuration is anomalous for its position in the periodic table, having an s2p configuration instead of the s2d configuration of its homolog lutetium. However, this does not appear to affect lawrencium's chemistry.

In the 1950s, 1960s, and 1970s, many claims of the synthesis of lawrencium of varying quality were made from laboratories in the Soviet Union and the United States. The priority of the discovery and therefore the name of the element was disputed between Soviet and American scientists. The International Union of Pure and Applied Chemistry (IUPAC) initially established lawrencium as the official name for the element and gave the American team credit for the discovery; this was reevaluated in 1997, giving both teams shared credit for the discovery but not changing the element's name.

  1. ^ Emsley, John (2011). Nature's Building Blocks: An A-Z Guide to the Elements (New ed.). New York, NY: Oxford University Press. p. 278–279. ISBN 978-0-19-960563-7.
  2. ^ Gyanchandani, Jyoti; Sikka, S. K. (10 May 2011). "Physical properties of the 6 d -series elements from density functional theory: Close similarity to lighter transition metals". Physical Review B. 83 (17): 172101. Bibcode:2011PhRvB..83q2101G. doi:10.1103/PhysRevB.83.172101.
  3. ^ Brown, Geoffrey (2012). The Inaccessible Earth: An integrated view to its structure and composition. Springer Science & Business Media. p. 88. ISBN 9789401115162.
  4. ^ Sato, T. K.; Asai, M.; Borschevsky, A.; Stora, T.; Sato, N.; Kaneya, Y.; Tsukada, K.; Düllman, Ch. E.; Eberhardt, K.; Eliav, E.; Ichikawa, S.; Kaldor, U.; Kratz, J. V.; Miyashita, S.; Nagame, Y.; Ooe, K.; Osa, A.; Renisch, D.; Runke, J.; Schädel, M.; Thörle-Pospiech, P.; Toyoshima, A.; Trautmann, N. (9 April 2015). "Measurement of the first ionization potential of lawrencium, element 103" (PDF). Nature. 520 (7546): 209–11. Bibcode:2015Natur.520..209S. doi:10.1038/nature14342. PMID 25855457. S2CID 4384213.
  5. ^ Östlin, A.; Vitos, L. (2011). "First-principles calculation of the structural stability of 6d transition metals". Physical Review B. 84 (11): 113104. Bibcode:2011PhRvB..84k3104O. doi:10.1103/PhysRevB.84.113104.
  6. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  7. ^ Oganessian, Yu. Ts.; Utyonkov, V. K.; Kovrizhnykh, N. D.; et al. (2022). "New isotope 286Mc produced in the 243Am+48Ca reaction". Physical Review C. 106 (064306). doi:10.1103/PhysRevC.106.064306.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search